A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.

نویسندگان

  • Shengyuan Deng
  • Guoqiang Jian
  • Jianping Lei
  • Zheng Hu
  • Huangxian Ju
چکیده

A novel biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) on nitrogen-doped carbon nanotubes (CNx-MWNTs) modified electrode. The CNx-MWNTs membrane showed an excellent electrocatalytic activity toward the reduction of O(2) due to its diatomic side-on adsorption on CNx-MWNTs. The nitrogen doping accelerated the electron transfer from electrode surface to the immobilized GOx, leading to the direct electrochemistry of GOx. The biofunctional surface showed good biocompatibility, excellent electron-conductive network and large surface-to-volume ratio, which were characterized by scanning electron microscopy, contact angle and electrochemical impedance technique. The direct electron transfer of immobilized GOx led to stable amperometric biosensing for glucose with a linear range from 0.02 to 1.02 mM and a detection limit of 0.01 mM (S/N=3). These results indicated that CNx-MWNTs are good candidate material for construction of the third-generation enzyme biosensors based on the direct electrochemistry of immobilized enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile...

متن کامل

Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor.

A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical perfor...

متن کامل

Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The ...

متن کامل

Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode.

We investigated the direct electrochemistry of glucose oxidase (GOx) at gelatin-multiwalled carbon nanotube (GCNT) modified glassy carbon electrode (GCE). GOx was covalently immobilized onto GCNT modified GCE through the well known glutaraldehyde (GAD) chemistry. The immobilized GOx showed a pair of well-defined reversible redox peaks with a formal potential (E(0)') of -0.40V and a peak to peak...

متن کامل

An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(o-aminophenol) and carbon nanotubes composite film on a gold electrode.

An amperometric glucose biosensor is developed that is based on immobilization of glucose oxidase (GOD) in a composite film of poly(o-aminophenol) (POAP) and carbon nanotubes (CNT), which are electrochemically co-polymerized at a gold (Au) electrode. Because of the high surface per volume ratio and excellent electrical conductivity of CNT, the biosensor based on an Au/POAP/CNT/GOD electrode has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2009